Rotary Motion Sensor
Product Number: ENROT-A148

Overview
Understanding how things move is basic to understanding physics. The Rotary Motion Sensor allows you to experiment with how things move, accelerate and swing. The pendulum accessory helps students explore another aspect of movement, the effects of gravity on objects in motion.

The Rotary Motion Sensor can be connected to all types of einstein™ data loggers.

Typical experiments

Physics
- Oscillation of a pendulum
- Newton’s Second Law
- Conservation of angular momentum
- Linear motion on a dynamic track

How it works
The Rotary Sensor contains an optic encoder which sends electronic pulses to a microprocessor. The pulses count how far the sensor’s axis spins and in which direction. The microprocessor uses this information to
calculate the sensor’s speed and direction which is forwarded to the data logger.

Sensor specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>±360°</td>
</tr>
<tr>
<td>Resolution (12-bit)</td>
<td>0.062°</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.125°</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>1 m/s</td>
</tr>
<tr>
<td>Default Sample Rate</td>
<td>10 samples per second</td>
</tr>
<tr>
<td>3-Step Pulley Radius</td>
<td>0.025 m, 0.015 m, 0.005 m</td>
</tr>
<tr>
<td>Direction of Motion</td>
<td>Indicates</td>
</tr>
<tr>
<td>Data Logger Input Type</td>
<td>Digital</td>
</tr>
</tbody>
</table>

Data logging and analysis

MiLAB™ Mobile

1. Take your einstein™ Tablet OR pair your einstein™LabMate™ with your Android or iOS tablet via Bluetooth
2. Insert the sensor cable into one of the sensor ports via the DT to einstein™ sensor adaptor
3. Launch MiLAB
4. Make sure the icon next to the sensor is checked (✓) to enable it for logging
5. Tap the Settings icon for further options

MiLAB™ for Desktops
1. Pair your einstein™LabMate™ with your desktop machine via Bluetooth, or connect it via the USB cable (found in the einstein™LabMate™ box).
2. Insert the sensor cable into one of the sensor via the DT to einstein™ sensor adaptor
3. Launch MiLAB
4. Click on Full Set up in the Current Setup Summary Box
5. Click Full Setup, located at the bottom of the Current Setup Summary window to program the data logger’s sample rate, number of samples, units of measurement, and other options.

6. Click "set" and chose the wheel Radius:

7. Click the Run button () to start logging.

Calibration

As soon as the Rotary Motion sensor is connected to the data logger the angle of the pulley will be set to zero.

Experimental set up

The Rotary Motion Sensor comes with:

- Rotary Motion Sensor
To attach the Mounting Rod, simply screw it into the threaded hole at the bottom of the sensor.

Pendulum
The Pendulum is an optional attachment that is commonly used with the Rotary Motion Sensor. To attach the Pendulum:
1. Use a Philips Head screwdriver to remove the screw connecting the pulley to the sensor.
2. Carefully remove the pulley, reverse it and place it back on the sensor with the hole in the pulley and the hole in the sensor aligned. Do not replace the screw yet.
3. The pendulum can now be attached either at one end for use in pendulum experiments or in the center to find the rotational inertia of point of masses.
4. Line up the appropriate threaded hole in the pendulum with the threaded hole in the pulley and sensor and bolt the three together.

Example of using the Rotary Motion Sensor

Oscillation of a Pendulum
In this experiment we explore the oscillations or repetitive movements of a pendulum.

Additional Equipment
In addition to the Rotary Motion Sensor you will need:

- The Pendulum attachment
- A Table Clamp
- A Steel Rod
- A right-angle clamp

1. Measure the length and weight of the pendulum rod and record
2. Measure the weight of the weights and record
3. Attach the Mounting Rod to the Center
4. Assemble the Pendulum as explained in Experimental Setup. Make sure the Pendulum is connected through the threaded hole at one end of the rod and not the center.
5. Connect the Rotary Motion Sensor to the data logger and assemble the experiment as shown in Figure 1.
6. Set the Rate at 1000 samples per second and the number of Samples to 150000.
7. Click Run.
8. Lift the lower end of the pendulum up and then release.
9. When the recording ends save the results.
10. Use these results to discuss pendulum oscillations, the Fourier Transformation and harmonic motion.

Troubleshooting
If the Rotary Motion Sensor isn't automatically recognized by MiLAB, please contact Fourier Education's technical support.
Technical support
For technical support, you can contact the Fourier Education’s technical support team at:
Web: www.einsteinworld.com/support
Email: support@fourieredu.com

Copyright and Warranty
All standard Fourier Systems sensors carry a one (1) year warranty, which states that for a period of twelve months after the date of delivery to you, it will be substantially free from significant defects in materials and workmanship.
This warranty does not cover breakage of the product caused by misuse or abuse.
This warranty does not cover Fourier Systems consumables such as electrodes, batteries, EKG stickers, cuvettes and storage solutions or buffers.