Electrostatic Charge Sensor|1

Electrostatic Charge Sensor

Product Number: ENCRG261

Overview

The Electrostatic Charge sensor is a dual range, all-purpose sensor that can be used in many electrostatic experiments. It is not affected by humidity and can perform quantitative measurements and indicate charge polarity making it superior to the traditional electroscope.

The Charge sensor can be connected to all types of einstein[™] data loggers. It can be used for various Physics experiments.

Typical experiments

- Measuring the charge produced by friction
- Measuring the charge produced by induction
- Investigating conductive and isolating materials
- Quantifying the charge on a capacitor plate
- Investigating how wave patterns change when the amplitude

- and the frequency are changed
- Exploring the relationship between the charge and voltage drops across a parallel plate capacitor

How it works

The Charge sensor is a voltage amplifier with a very high input resistance. A capacitor is connected to the amplifier input. The applied charge charges the input capacitor, causing a voltage drop. The voltage is amplified and adjusted to the range of 0-3 Volts, which is the range accepted by the Analog-Digital converter. The proper result is then recorded and displayed.

Sensor specification

Range	±250 nC
	±25 nC
Resolution (12-bit)	0.12 nC for ±0.25 μC
	12.2 pC for ±0.025 μC
Input Capacitance:	180nF
Input Resistance:	Infinite (few g Ω)
Input Over Voltage Protection	±50 V

Note: sensor cables sold separately

Technical Notes

- Warning extreme caution should be taken when experimenting with electricity. These experiments should only be conducted in the presence of a teacher or supervisor
- Warning Keep all liquids away from any electricity experiments
- Warning This sensor is designed for up to 50 volts, never use for higher voltages
- Warning This sensor is not designed to measure line voltage. Never connect this sensor to a wall socket

Calibration and range set up

Android- MiLAEBx™

- 1. Tap on Sensors in Lab sub app
- 2. Tap on Sensors
- 3. Tap the Settings button next to the sensor's name

Set Zero Calibration

Flip the Set as Zero switch to set the current value as the zero or base value.

					Elect	rostat	tic Cha	arge	S e n s o r 3
12:17 PM	1 <u>†</u> G 🗌 🖬								💎 🛢 35%
÷	Settings								~ ×
-0.03	Charge (-0.025-0.025 µC)								*
Set	[-0.025 : 0.025] as Zero								
Select range	•							[-	0.025 - 0.025] μC ▼
		•	•	\bigcirc			Ō		

Tap on V to confirm the action

Range setup

Tap on the arrow and select the range

12:17 PM 🖬 İ G 📃 🔸							💎 🛢 35%
← Settings							✓ ×
Charge (-0.025-0.025 µC)							
-0.03 [-0.025 : 0.025]							*
							-
Set as Zero							
Select range							[-0.025-0.025] µC 🔻
							[-0.25 - 0.25] µC
	4)	•	\bigcirc	•	•)	٥	

Tap on V to confirm the action

MiLAEBx[™] Desktop

Set Zero Calibration

In the Current Reading column, click Set to set the current value as the zero or base value.

Click on Reset to cance this action.

Equipment List

- Sensor
- Charging cables

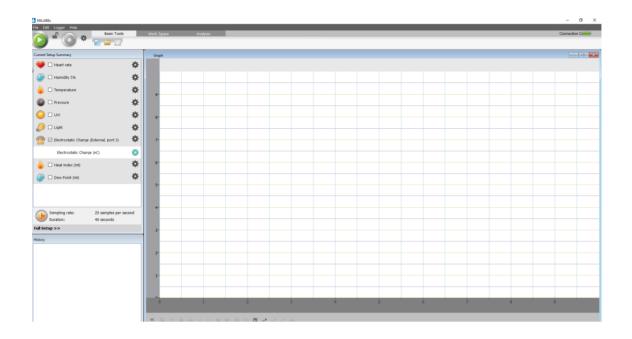
Technical Notes

Due to the sensor's high sensitivity, use of a shielded BNC/alligator cable

connecting the sensor to techarge under test is recommended.

Data logging and analysis

Android MiLAEBx[™]


- 1. Take your einstein[™] Tablet OR pair your einstein[™]LabMate[™] with your Android or iOS tablet via Bluetooth
- 2. Insert the sensor cable into one of the sensor ports
- 3. Launch MiLAEBx go to Lab Start an Experiment
- 4. The app detects the sensor automatically.
- 5. To change the sample rate or duration go to setup and then V to confirm
- 6. You are ready to start an experiment

MiLAEBx[™] Desktop

- Pair your einstein™LabMate™ with your PC, MAC, or Linux machine via Bluetooth, or connect it via the Scable (found in the einstein™LabMate™ box).
- 2. Insert the sensor cable into one of the sensor ports
- 3. Launch MiLAEBx
- 4. Electrostatic sensor should be selected

- 5. Click Full Setup, located at the bottom of the Current Setup Summary window to program the data logger's range, sample rate, number of samples, units of measurement, and other options.
- 6. Click the Run button on the main tool bart to start logging.

An Example of using the Electrostatic Charge Sensor

Measuring the Charge and Voltage Drop Across a Parallel Plate Capacitor **Note:** the measured capacitor should be at the range of ~pF or less. When a parallel plate capacitor is connected to a power supply, the surfaces of the plates are charged wh equal and opposite charges. The charge on each plate is proportional to the applied voltage. The graph in Figure 1 below shows this relationship:

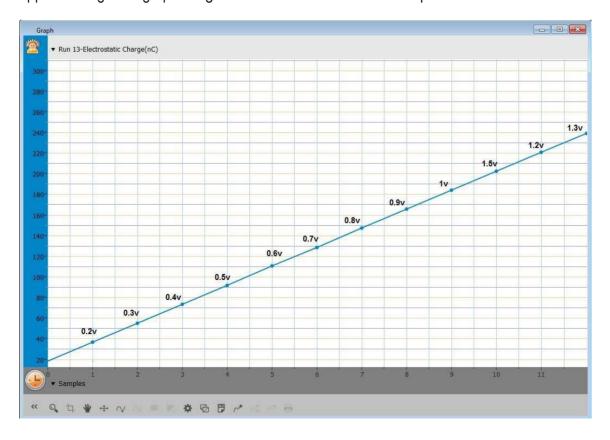


Figure 1: Relationship between charge and voltage drop across a parallel plate capacitor

Troubleshooting

If the Electrostatic Charge sensor isn't automatically recognized by MiLAEBx, please contact Fourier Education's technical support.

Technical support

For technical support, you can contact the Fourier Education's technical support team at: Web: <u>www.einsteinworld.com/support</u> Email: <u>support@fourieredu.com</u>

Copyright and Warranty

All standard Fourier Systems sensors carry a one (1) year warranty, which states that for a period of twelve months after the date of delivery to you, it will be substantially free from significant defects in materials and workmanship.

This warranty does not cover breakage of the product caused by misuse or abuse. This warranty does not cover Fourier Systems consumables such as electrodes, batteries, EKG stickers, cuvettes and storage solutions or buffers.

ALBERT EINSTEIN and EINSTEIN are either trademarks or registered trademarks of The Hebrew University of Jerusalem. Represented exclusively by GreenLight. Official licensed merchandise. Website: einstein.biz