

Nitrate Sealed Electrode Sensor Bundle

Product Number: ENNTR-A017A

Overview

Nitrates have a wide variety of uses ranging from fertilizers to explosives. In agriculture, nitrates are essential building block for plant proteins.

The Nitrate Sealed Electrode Sensor can be connected to all types of einstein™ data loggers

Typical experiments

Water Quality

• To complete

- Effectiveness of Fertilizers
- Explosive materials and combustible products

Environmental Science

• To complete

How it works

The Nitrate sensor contains a Permafil (non-refillable) electrode containing nitrate ions inside a membrane. When inserted into a solution containing nitrate charged molecules the nitrate in the solution is attracted to the nitrate in the membrane. By measuring the electrical potential of this attraction, the sensor can determine the level of nitrate in the solution. Because they only attract other nitrate molecules sealed electrode sensors work well even in solutions containing numerous elements.

Sensor specification

Concentration Range: 7 x 10-6 to 1 M (0.1 ppm to 14,000 ppm)

Resolution (12-bit): 0.15 mV

Minimum Sample Size: 5 mL in a 50 mL beaker
Default Sample Rate 10 samples per second

pH Range: 2.5 to 11 pH Temperature Range: 0 to 50 °C Reproducibility: \pm 4% Electrode Resistance 1 to 4 M Ω

Interfering Ions CIO₄-, CIO₃-, I-, F-

Note: Sensor cables sold separately

Contents

The Nitrate Sealed Electrode Sensor comes equipped with:

- The Nitrate Sealed Electrode Sensor
- ISE (Ion Selective Electrode) Amplifier
- 1 Oz NO₃- Ionic Strength Adjuster (ISA)
- 1 oz NO₃- ppm as N Standard
- 1 oz NO₃- 10 ppm as N Standard
- 1 oz NO₃- 1000 ppm as N Standard

Solutions

ISA 2M (NH₄)₂SO₄: 264.3 g (NH₄)₂SO₄ in 1000 mL DI water 10ppm NO₃⁻ (714 M NO₃⁻): 0.06.067 g NaNO₃ in 1000 mL DI water 1000ppm NO₃⁻ (0.0714 M NO₃⁻): 6.067 g NaNO₃ in 1000 mL DI water

Experimental set up

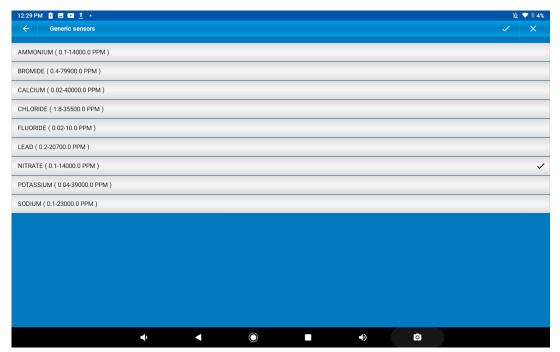
Electrode Preparation

- Remove the protective plastic cover from the tip of the electrode and gently shake the electrode downward like a thermometer to remove any air bubbles trapped inside. Caution: Do not touch the membrane with your fingers.
- 2. Rinse the electrode with DI water and blot dry. Do not rub dry.
- 3. Condition the electrode by soaking it in the provided 10 ppm nitrate standard solution for 30 minutes.
- 4. After the conditioning period, rinse the tip of the electrode with DI water and blot dry.
- 5. The electrode is now ready to use.

This sensor must be calibrated before use (see the **Data Logging, Calibrating and Analysis** below).

Two solutions of different concentrations (depending on the range of measurements) are used to calibrate the electrode. ISA is added to all solutions to ensure that the samples and the standards have the same ionic strength.

In addition to the aforementioned contents, you will also need:

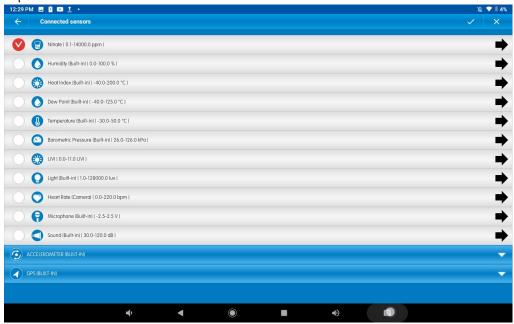

- Wash Bottle with Distilled (DI) or deionized water.
- Several clean beakers.
- 0.1 ml, 10 ml pipettes.

Data logging, Calibrating and Analysis

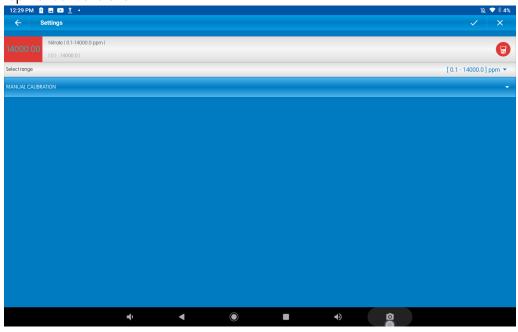
Android

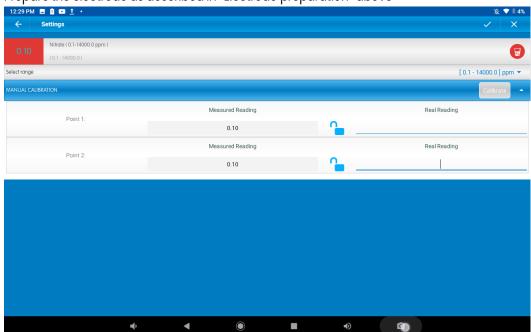
Connecting the Electrode

- Take your einstein™ Tablet or pair your einstein™ LabMate with your Android or iOS tablet via Bluetooth
- 2. Insert the electrode into the ISE amplifier
- 3. Insert the ISE amplifier cable into one of the sensor ports
- 4. Launch MiLABEx
- 5. Tap on LAB Start an Experiment
- 6. MiLABEx will automatically detect the ISE amplifier
- 7. Tap on Sensors


- 8. Tap ISE amplifier and select the Nitrate electrode
- 9. Make sure the icon is checked to enable it for logging

Preparing the calibration solutions


- 1. Add 10 ml of the 10 ppm solution into a 50 mL beaker.
- 2. Add 0.2 ml of ISA and stir thoroughly.
- 3. Add 10 ml of the 1000 ppm solution into a 50 mL beaker.
- 4. Add 0.2 ml of ISA and stir thoroughly.


Calibrating the sensor

1. Tap the arrow icon

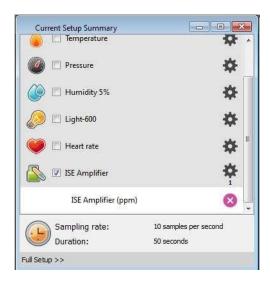
2. tap Manual Calibration

3. Prepare the electrode as described in "Electrode preparation" above

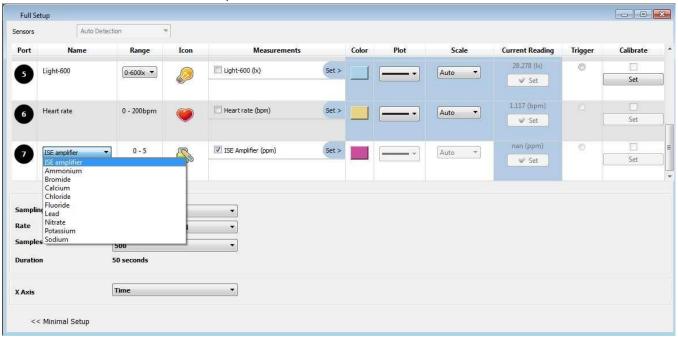
- 4. Tap the "Real Reading" box of Point 1
- 5. Enter the value "10"
- 6. Rinse the electrode with DI water, blot dry and place in the beaker with the 10 ppm solution. Wait for
- 7. a stable reading, and then tap the "Lock" icon
- 8. Tap the "Real Reading" box of Point 2
- 9. Enter the value "1000"
- 10. Rinse the electrode with DI water, blot dry and place in the beaker with the 1000 ppm solution. Watfor a stable reading, and then tap the "Lock" icon
- 11. Tap "Calibrate"
- 12. You are ready to run your experiment

Note: It is best to calibrate the electrode with one Real Reading below your expected reading and one Real Reading above your expected reading. For example, if you expect a reading of around 100 ppm it is best bcalibrate with one Real Reading below 100 ppm and one Real Reading above 100 ppm

Note: You can prepare your own ppm solutions for calibration, using the strength of your solution as the "Real Reading"


Desktop

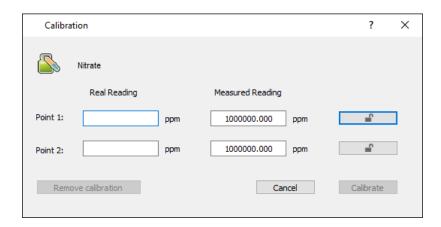
Connecting the Electrdode


1. Pair your einstein™ LabMate with your PC, MAC, or Linux machine via

Bluetooth, or connect it via the USB cable (found in the einstein™ LabMate box).

- 2. Insert the electrode into the ISE amplifier
- 3. Insert the ISE amplifier cable into one of the sensor ports
- 4. Launch MiLABEx and click on LAB Start an Experiment
- MiLABEX will automatically detect the ISE amplifier and show it in the Current setup Summary window

6. Click Full Setup, located at the bottom of the Current Setup Summary window to set which ISE electrode you are using and to program the data logger's sample rate, number of samples, units of measurement, and other options



Preparing the calibration solutions

- 1. Add 10 ml of the 10 ppm solution into a 50 mL beaker
- 2. Add 0.2 ml of ISA and stir thoroughly
- 3. Add 10 ml of the 1000 ppm solution into a 50 mL beaker
- 4. Add 0.2 ml of ISA and stir thoroughly

Calibration

- 1. StartMiLABEx™ and select the Nitrate electrode as described above.
- 2. Under the Calibrate column tap "Set" to bring up the Calibration menu

- Prepare the electrode as described in "Electrode preparation" above.
- 4. Tap the "Real Reading" box of Point 1
- 5. Enter the value "10"
- 6. Rinse the electrode with DI water, blot dry and place in the beaker with the 10 ppm. Wait for a stable reading, and then click the "Lock" icon
- Tap the "Real Reading" box of Point 2
- 8. Enter the value "1000"
- 9. Rinse the electrode with DI water, blot dry and place in the beaker with the 1000 ppm solution. Wait for a stable reading, and then click the "Lock" icon
- 10. Click "Calibrate"
- Tap the Run button on the main toolbar of the Launcher View to start logging

Note: It is best to calibrate the electrode with one Real Reading below your expected reading and one RedReading above your expected reading. For example, if you expect a reading of around 100 ppm it is best bcalibrate with one Real Reading below 100 ppm and one Real Reading above 100 ppm

Note: You can prepare your own ppm solutions for calibration, using the strength of your solution as the "Real Reading"

Maintenance and Electrode Storage

Short Term:

Rinse the electrode thoroughly with DI water and place the tip in a diluted standard solution (10 ppm) between measurements.

Long Term:

Rinse the electrode thoroughly with DI water, blot and store dry. Replace the cap to protect the sensing element.

Follow procedures in the sections **Electrode Preparation** before using the electrode again.

Troubleshooting

If the electrode slope is not within the normal range, the following procedure may restore the electrode.

- 1. Soak the electrode in the 10 ppm standard solution for 10 minutes before use.
- 2. Repeat the procedure outlined **Electrode Preparation** again.

Technical support

For technical support, you can contact the Fourier Education's technical support

team at: Web: www.einsteinworld.com/support

Email: support@fourieredu.com

Copyright and Warranty

All standard Fourier Systems sensors carry a one (1) year warranty, which states that for a period of twelve months after the date of delivery to you, it will be substantially free from significant defects in materials nad workmanship.

This warranty does not cover breakage of the product caused by misuse or abuse.

This warranty does not cover Fourier Systems consumables such as electrodes, batteries, EKG stickers, cuvettes and storage solutions or buffers.