

Current Sensor ±2.5 A

Product Number: ENCRN005

Overview

The Current sensor is an ammeter, measuring current values between -2.5 A and 2.5 A. As a differential sensor it is capable of measuring both direct and alternating current and is ideal for use in a wide range of experiments in Electricity, Physics and Chemistry.

The Current sensor can be connected to all types of einstein[™] data loggers.

Typical experiments

- EMF and Internal Resistance
- V-I Characteristics of a Wire, a Light Bulb and a Diode
- Resistance of a Wire Ohm's Law
- Series and Parallel Circuits
- Magnetic Field of a Solenoid vs. Current
- AC Circuit RCL Resonance

How it works

The sensor contains a 0.1 Ω resistor. According to Ohm's Law, the current can be determined by dividing the voltage flowing through a conductor divided by the resistance of the resistor $-I = V_{P}$.

Sensor specification

Range:	± 2.5 A				
Input Current:	AC or DC				
Accuracy:	±3 % over entire range				
Resolution (12-bit):	1.25 mA				
Default Sample Rate:	10 samples per second				
Input Resistance:	0.1 Ω				
Maximum Input Current:	5A				

Note: sensor cables sold separately

Technical Notes

- Short the two leads of the Current sensor before connecting it to the data logger sensor inputs.
- For more accurate measurements connect the negative input (black) to the power source negative input (ground).

Calibration

The Current sensor is shipped fully calibrated. For more accurate results use the Set Zero function or two point calibration.

MiLAEBx - Android

- 1. Launch MiLABEx
- 2. Connect the sensor to your Einsetein device or to your LabMate
- 3. MiLABEx identifies automatically the sensor and selects it.

4. Tap on Sensors , and then on the sensor row

Set Zero Calibration

- 5. Place the sensor and connect it with Zero Value.
- 6. Select Set on Zero a
- 7. Tap on V to confirm the settings

2:54 PM 🗳 🖌 🖌	💎 🎚 25%
← Settings	✓ ×
Current (-250.0-250.0 mA.)	
-0.06	Ø
Set as Zero	
MANUAL CALIBRATION	· · · · · · · · · · · · · · · · · · ·
a) a	

Two Point Calibration

5. Tap on Manual Calibra	ation					
2:54 PM 🖬 Ġ 📃			♥ 4 25%			
← Settings			✓ ×			
0.31 Current (-250.0-250.0 mA) (-250.0 : 250.0)			0			
Set as Zero						
MANUAL CALIBRATION			Calibrate			
	Measured Reading		Real Reading			
Point 1:	0.31	<u> </u>				
	Measured Reading		Real Reading			
Point 2:	0.31					
4)						

6. Measure a current with a known value (e.g. 1 mA). Enter this known value in the Real Reading field

7. Measure the current and wait for the readings to stabilize.

- 8. Tap the lock button
- 9. Measure a current with a different known value (e.g. 2 mA). Enter this known value in the Real Reading field
- 10. Measure the current and wait for the readings to stabilize.
- 11. Tap the lock button
- 12. Tap Calibrate.
- 13. Tap on V to save the changes
- 14. Tap V to confirm the settings and return to the LAB screen.
- 15. You are ready to Experiment

Note: For the most accurate results try to calibrate the sensor with one Real Reading under the expected results and one Real Reading over the expected results.

MiLAEBx Desktop

- 1. Launch MiLABEx
- 2. Connect the sensor to your LabMate
- 3. MiLABEx identifies automatically the sensor and selects it.
- 4. Click on Full setup

Set Zero Calibration

In the Current Reading column, click Set 💷 to set the current value as the zero or base value.

Reset 🗱 cancels this action

Two Point Calibration

5. In the Calibrate column click Set

Lib.img: 2pointcalibrateset l Calibrate						
Set						

6. The Calibration window will appear

S Cu	rrent				
	Real Reading		Measured Reading		
Point 1:	l.	A	0.012	А	
Point 2:		A	0.012	A	
Remove	alibration		Car	ncel	Calibrate

- 7. Measure a current with a known value (e.g. 1 mA). Enter this known value in the Real Reading field
- 8. Measure the current and wait for the readings to stabilize.
- 9. Click the lock icon
- 10. Measure a current with a different known value (e.g. 2 mA). Enter this known value in the Real Reading field

- 11. Measure the current and wait for the readings to stabilize.
- 12. Click the lock icon
- 13. Click Calibrate
- 14. Minimize the full setup and you are ready to Experiment

Note: For the most accurate results try to calibrate the sensor with one Real Reading under the expected results and one Real Reading over the expected results.

Data logging and analysis

MiLAEBx[™] Android

- 1. Take your einstein[™] Tablet OR pair your einstein[™]LabMate with your Android or iOS tablet via Bluetooth
- 2. Insert the sensor cable into one of the sensor ports
- 3. Launch MiLAEBx
- 4. MiLAEBx will automatically detect the sensor and selects it
- 5. You can change the sample rate and the duration in the setup button
- 6. You are ready to experiment!

MiLAEBx Desktop

- Pair your einstein[™]LabMate with your PC, MAC, or Linux machine via Bluetooth, or connect it via the USB cable (found in the einstein[™]LabMate[™] box).
- 2. Insert the sensor cable into one of the sensor ports
- 3. Launch MiLAEBx

4. MiLAEBx will automatically detect the sensor and show it in the Current Setup Summary window

5. Click Full Setup, located at the bottom of the Current Setup Summary window to program the data logger's sample rate, number of samples, units of measurement, and other options

Full S	etup								-	
Sensors	Auto Dete	ction .	-							
Port	Name	Range	Icon	Measurements	Color	Plot	Scale	Current Reading	Trigger	Calibrate
0	Current±2.5 (A)		>	☑ Current (A)	Set >	<u> </u>	Auto 💌	Wait	Ø	Set #
•				. 19						
Sampli	ng Au	0	•]							
Rate	Eve	ry 10 seconds	*							
Sample	10	000	*							
Duratio	on 1 da	ys 3 hours 46 min	uts and 40 sec	onds						
X Axis	Tin	ie .	•							
<< M	inimal Setup									

Example of using the Current ±2.5A Sensor

Build a simple circuit with a high power ceramic resistor, 3.3 ohm, serially connected to the Current sensor and to 8V power supply.

(You can use any other values within the sensor's range).

- 1. Click the Run button
- 2. Gradually reduce the output voltage of the power supply and see how it affects the current measured.
- 3. When the measurement reaches 100 mA, click the Stop button
- 4. See the expected results Figure 1.

Troubleshooting

If the Current sensor isn't automatically recognized by MultiLab4/ MiLAEBx, please contact Fourier Education's technical support.

Technical support

For technical support, you can contact the Fourier Education's technical support team at: Web: <u>www.einsteinworld.com/support</u> Email: <u>support@fourieredu.com</u>

Copyright and Warranty

All standard Fourier Systems sensors carry a one (1) year warranty, which states that for a period of twelve months after the date of delivery to you, it will be substantially free from significant defects in materials and workmanship.

This warranty does not cover breakage of the product caused by misuse or abuse. This warranty does not cover Fourier Systems consumables such as electrodes, batteries, EKG stickers, cuvettes and storage solutions or buffers.

ALBERT EINSTEIN and EINSTEIN are either trademarks or registered trademarks of The Hebrew University of Jerusalem. Represented exclusively by GreenLight. Official licensed merchandise. Website: einstein.biz